publications (ML/GNN)

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. ML/GNN
    From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
    Nima Shoghi, Adeesh Kolluru, John R Kitchin, and 3 more authors
    arXiv preprint arXiv:2310.16802, 2024
  2. ML/GNN
    The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
    Anuroop Sriram, Sihoon Choi, Xiaohan Yu, and 6 more authors
    ACS Central Science, 2024
  3. ML/GNN
    Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
    Nate Gruver, Anuroop Sriram, Andrea Madotto, and 3 more authors
    ICLR, 2024
  4. ML/GNN
    Generalization of graph-based active learning relaxation strategies across materials
    Xiaoxiao Wang, Joseph Musielewicz, Richard Tran, and 6 more authors
    Machine Learning: Science and Technology, 2024
  5. ML/GNN
    CatTSunami: Accelerating Transition State Energy Calculations with Pre-trained Graph Neural Networks
    Brook Wander, Muhammed Shuaibi, John R Kitchin, and 2 more authors
    arXiv preprint arXiv:2405.02078, 2024
  6. ML/GNN
    Open materials 2024 (omat24) inorganic materials dataset and models
    Luis Barroso-Luque, Muhammed Shuaibi, Xiang Fu, and 6 more authors
    arXiv preprint arXiv:2410.12771, 2024

2023

  1. ML/GNN
    Beyond independent error assumptions in large GNN atomistic models
    Janghoon Ock, Tian Tian, John Kitchin, and 1 more author
    The Journal of Chemical Physics, 2023
  2. ML/GNN
    AmpTorch: A Python package for scalable fingerprint-based neural network training on multi-element systems with integrated uncertainty quantification
    Muhammed Shuaibi, Yuge Hu, Xiangyun Lei, and 8 more authors
    Journal of Open Source Software, 2023
  3. ML/GNN
    Chemical Properties from Graph Neural Network-Predicted Electron Densities
    Ethan M Sunshine, Muhammed Shuaibi, Zachary W Ulissi, and 1 more author
    The Journal of Physical Chemistry C, 2023

2022

  1. ML/GNN
    How Do Graph Networks Generalize to Large and Diverse Molecular Systems?
    Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, and 4 more authors
    arXiv preprint arXiv:2204.02782, 2022
  2. ML/GNN
    Transfer learning using attentions across atomic systems with graph neural networks (TAAG)
    Adeesh Kolluru, Nima Shoghi, Muhammed Shuaibi, and 4 more authors
    The Journal of Chemical Physics, 2022
  3. ML/GNN
    Spherical Channels for Modeling Atomic Interactions
    C. Lawrence Zitnick, Abhishek Das, Adeesh Kolluru, and 5 more authors
    NeurIPS, Dec 2022
  4. ML/GNN
    Robust and scalable uncertainty estimation with conformal prediction for machine-learned interatomic potentials
    Yuge Hu, Joseph Musielewicz, Zachary W Ulissi, and 1 more author
    Machine Learning: Science and Technology, Dec 2022

2021

  1. ML/GNN
    Rotation Invariant Graph Neural Networks using Spin Convolutions
    Muhammed Shuaibi, Adeesh Kolluru, Abhishek Das, and 4 more authors
    arXiv preprint arXiv:2106.09575, Dec 2021
  2. ML/GNN
    The Open Catalyst Challenge 2021: Competition Report.
    Abhishek Das, Muhammed Shuaibi, Aini Palizhati, and 8 more authors
    In NeurIPS (Competition and Demos), Dec 2021

2020

  1. ML/GNN
    Methods for comparing uncertainty quantifications for material property predictions
    Kevin Tran, Willie Neiswanger, Junwoong Yoon, and 3 more authors
    Machine Learning: Science and Technology, May 2020

2019

  1. ML/GNN
    Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts
    Seoin Back, Junwoong Yoon, Nianhan Tian, and 3 more authors
    The Journal of Physical Chemistry Letters, Jul 2019