publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. Catalysis/ML
    Pourbaix Machine Learning Framework Identifies Acidic Water Oxidation Catalysts Exhibiting Suppressed Ruthenium Dissolution
    Jehad Abed, Javier Heras-Domingo, Rohan Yuri Sanspeur , and 8 more authors
    Journal of the American Chemical Society, 2024
  2. ML/GNN
    From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
    Nima Shoghi, Adeesh Kolluru, John R Kitchin , and 3 more authors
    arXiv preprint arXiv:2310.16802, 2024
  3. ML/GNN
    The Open DAC 2023 Dataset and Challenges for Sorbent Discovery in Direct Air Capture
    Anuroop Sriram, Sihoon Choi, Xiaohan Yu , and 6 more authors
    ACS Central Science, 2024
  4. ML/GNN
    Fine-Tuned Language Models Generate Stable Inorganic Materials as Text
    Nate Gruver, Anuroop Sriram, Andrea Madotto , and 3 more authors
    ICLR, 2024
  5. ML/GNN
    Generalization of graph-based active learning relaxation strategies across materials
    Xiaoxiao Wang, Joseph Musielewicz, Richard Tran , and 6 more authors
    Machine Learning: Science and Technology, 2024
  6. CatTSunami: Accelerating Transition State Energy Calculations with Pre-trained Graph Neural Networks
    Brook Wander, Muhammed Shuaibi, John R Kitchin , and 2 more authors
    arXiv preprint arXiv:2405.02078, 2024
  7. Adapting OC20-trained EquiformerV2 Models for High-Entropy Materials
    Christian M Clausen, Jan Rossmeisl, and Zachary W Ulissi
    arXiv preprint arXiv:2403.09811, 2024

2023

  1. Catalysis/ML
    Identifying limitations in screening high-throughput photocatalytic bimetallic nanoparticles with machine-learned hydrogen adsorptions
    Kirby Broderick, Eric Lopato, Brook Wander , and 3 more authors
    Applied Catalysis B: Environmental, Jan 2023
  2. Catalysis/ML
    The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
    Richard Tran, Janice Lan, Muhammed Shuaibi , and 14 more authors
    ACS Catalysis, Jan 2023
  3. Catalysis/ML
    AdsorbML: a leap in efficiency for adsorption energy calculations using generalizable machine learning potentials
    Janice Lan, Aini Palizhati, Muhammed Shuaibi , and 6 more authors
    npj Computational Materials, Jan 2023
  4. ML/GNN
    Beyond independent error assumptions in large GNN atomistic models
    Janghoon Ock, Tian Tian, John Kitchin , and 1 more author
    The Journal of Chemical Physics, Jan 2023
  5. Catalysis/ML
    WhereWulff: A Semiautonomous Workflow for Systematic Catalyst Surface Reactivity under Reaction Conditions
    Rohan Yuri Sanspeur, Javier Heras-Domingo, John R. Kitchin , and 1 more author
    Journal of Chemical Information and Modeling, Jan 2023
    PMID: 37017312
  6. ML/GNN
    AmpTorch: A Python package for scalable fingerprint-based neural network training on multi-element systems with integrated uncertainty quantification
    Muhammed Shuaibi, Yuge Hu, Xiangyun Lei , and 8 more authors
    Journal of Open Source Software, Jan 2023
  7. ML/GNN
    Chemical Properties from Graph Neural Network-Predicted Electron Densities
    Ethan M Sunshine, Muhammed Shuaibi, Zachary W Ulissi , and 1 more author
    The Journal of Physical Chemistry C, Jan 2023
  8. Catalysis/ML
    Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV Data Set
    Aaron G. Garrison, Javier Heras-Domingo, John R. Kitchin , and 3 more authors
    Journal of Chemical Information and Modeling, Jan 2023
    PMID: 38049389
  9. Nanotechnology
    Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters
    Rajesh K Raju, Saurabh Sivakumar, Xiaoxiao Wang , and 1 more author
    Journal of Chemical Information and Modeling, Jan 2023

2022

  1. Catalysis
    Heterogeneous Catalysis in Grammar School
    Johannes T. Margraf, Zachary W. Ulissi, Yousung Jung , and 1 more author
    The Journal of Physical Chemistry C, Jan 2022
  2. ML/GNN
    How Do Graph Networks Generalize to Large and Diverse Molecular Systems?
    Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram , and 4 more authors
    arXiv preprint arXiv:2204.02782, Jan 2022
  3. Catalysis/ML
    FINETUNA: Fine-tuning Accelerated Molecular Simulations
    Joseph Musielewicz, Xiaoxiao Wang, Tian Tian , and 1 more author
    Machine Learning: Science and Technology, Sep 2022
  4. ML/GNN
    Transfer learning using attentions across atomic systems with graph neural networks (TAAG)
    Adeesh Kolluru, Nima Shoghi, Muhammed Shuaibi , and 4 more authors
    The Journal of Chemical Physics, Sep 2022
  5. ML/GNN
    Spherical Channels for Modeling Atomic Interactions
    C. Lawrence Zitnick, Abhishek Das, Adeesh Kolluru , and 5 more authors
    NeurIPS, Dec 2022
  6. Catalysis
    Site Geometry as a Descriptor for Catalyst Selectivity in Intermetallics
    Unnatti Sharma, Angela Nguyen, Michael John Janik , and 1 more author
    Preprint available at SSRN 4145497, Dec 2022
  7. Catalysis
    Detailed Microkinetics for the Oxidation of Exhaust Gas Emissions through Automated Mechanism Generation
    Bjarne Kreitz, Patrick Lott, Jongyoon Bae , and 6 more authors
    ACS Catalysis, Dec 2022
  8. Catalysis/ML
    Screening of bimetallic electrocatalysts for water purification with machine learning
    Richard Tran, Duo Wang, Ryan Kingsbury , and 4 more authors
    The Journal of Chemical Physics, Dec 2022
  9. ML/GNN
    Robust and scalable uncertainty estimation with conformal prediction for machine-learned interatomic potentials
    Yuge Hu, Joseph Musielewicz, Zachary W Ulissi , and 1 more author
    Machine Learning: Science and Technology, Dec 2022
  10. Catalysis/ML
    The Open Catalyst Challenge 2021: Competition Report
    Abhishek Das, Muhammed Shuaibi, Aini Palizhati , and 22 more authors
    Dec 2022
  11. Catalysis/ML
    Catlas: an automated framework for catalyst discovery demonstrated for direct syngas conversion
    Brook Wander, Kirby Broderick, and Zachary W. Ulissi
    Catal. Sci. Technol., Jul 2022
  12. Add.Manuf./ML
    Predicting Oxidation Behavior of Multi-Principal Element Alloys by Machine Learning Methods
    Jose A Loli, Amish R Chovatiya, Yining He , and 3 more authors
    Oxidation of Metals, Jul 2022

2021

  1. Catalysis/ML
    Open Catalyst 2020 (OC20) Dataset and Community Challenges
    Lowik Chanussot, Abhishek Das, Siddharth Goyal , and 14 more authors
    ACS Catalysis, Apr 2021
  2. Catalysis
    Efficient Discovery of Active, Selective, and Stable Catalysts for Electrochemical H_2O_2 Synthesis through Active Motif Screening
    Seoin Back, Jonggeol Na, and Zachary W. Ulissi
    ACS Catalysis, Feb 2021
  3. Catalysis/ML
    Computational catalyst discovery: Active classification through myopic multiscale sampling
    Kevin Tran, Willie Neiswanger, Kirby Broderick , and 3 more authors
    The Journal of Chemical Physics, Feb 2021
  4. Nanotechnology
    Elimination of Multidrug-Resistant Bacteria by Transition Metal Dichalcogenides Encapsulated by Synthetic Single-Stranded DNA
    Abhishek Debnath, Sanchari Saha, Duo O. Li , and 4 more authors
    ACS Applied Materials & Interfaces, Feb 2021
    PMID: 33570927
  5. Catalysis/ML
    Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy
    Junwoong Yoon, Zhonglin Cao, Rajesh K Raju , and 5 more authors
    Machine Learning: Science and Technology, Feb 2021
  6. ML/GNN
    Rotation Invariant Graph Neural Networks using Spin Convolutions
    Muhammed Shuaibi, Adeesh Kolluru, Abhishek Das , and 4 more authors
    arXiv preprint arXiv:2106.09575, Feb 2021
  7. The Open Catalyst Challenge 2021: Competition Report.
    Abhishek Das, Muhammed Shuaibi, Aini Palizhati , and 8 more authors
    In NeurIPS (Competition and Demos) , Feb 2021

2020

  1. Soft Materials
    Capturing Structural Transitions in Surfactant Adsorption Isotherms at Solid/Solution Interfaces
    Junwoong Yoon, and Zachary W. Ulissi
    Langmuir, Jan 2020
    PMID: 31891511
  2. ML/GNN
    Methods for comparing uncertainty quantifications for material property predictions
    Kevin Tran, Willie Neiswanger, Junwoong Yoon , and 3 more authors
    Machine Learning: Science and Technology, May 2020
  3. Catalysis
    Parallelized Screening of Characterized and DFT-Modeled Bimetallic Colloidal Cocatalysts for Photocatalytic Hydrogen Evolution
    Eric M Lopato, Emily A Eikey, Zoe C Simon , and 8 more authors
    ACS Catalysis, Mar 2020
  4. Education
    Computational Notebooks in Chemical Engineering Curricula
    Jonathan Verrett, Fani Boukouvala, Alexander Dowling , and 2 more authors
    Chemical Engineering Education, Jul 2020
  5. Catalysis/ML
    Accelerated discovery of CO2 electrocatalysts using active machine learning
    Miao Zhong, Kevin Tran, Yimeng Min , and 19 more authors
    Nature, May 2020
  6. Catalysis/ML
    Practical Deep-Learning Representation for Fast Heterogeneous Catalyst Screening
    Geun Ho Gu, Juhwan Noh, Sungwon Kim , and 3 more authors
    The Journal of Physical Chemistry Letters, Mar 2020
  7. Catalysis
    In silico discovery of active, stable, CO-tolerant and cost-effective electrocatalysts for hydrogen evolution and oxidation
    Seoin Back, Jonggeol Na, Kevin Tran , and 1 more author
    Phys. Chem. Chem. Phys., Aug 2020
  8. Catalysis
    Discovery of Acid-Stable Oxygen Evolution Catalysts: High-throughput Computational Screening of Equimolar Bimetallic Oxides
    Seoin Back, Kevin Tran, and Zachary W Ulissi
    ACS Applied Materials & Interfaces, Aug 2020
  9. Catalysis/ML
    Enabling robust offline active learning for machine learning potentials using simple physics-based priors
    Muhammed Shuaibi, Saurabh Sivakumar, Rui Qi Chen , and 1 more author
    Machine Learning: Science and Technology, Dec 2020
  10. Catalysis/ML
    Differentiable Optimization for the Prediction of Ground State Structures (DOGSS)
    Junwoong Yoon, and Zachary W Ulissi
    Physical Review Letters, Dec 2020
  11. Catalysis/ML
    An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage
    C Lawrence Zitnick, Lowik Chanussot, Abhishek Das , and 8 more authors
    arXiv preprint arXiv:2010.09435, Dec 2020

2019

  1. ML/GNN
    Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts
    Seoin Back, Junwoong Yoon, Nianhan Tian , and 3 more authors
    The Journal of Physical Chemistry Letters, Jul 2019
  2. Catalysis/ML
    Towards Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks
    Aini Palizhati, Wen Zhong, Kevin Tran , and 2 more authors
    Journal of Chemical Information and Modeling, Jul 2019
  3. Systems
    Optimization-Based Design of Active and Stable Nanostructured Surfaces
    Christopher L. Hanselman, Wen Zhong, Kevin Tran , and 2 more authors
    The Journal of Physical Chemistry C, Jul 2019

2018

  1. Catalysis/ML
    Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution
    Kevin Tran, and Zachary W. Ulissi
    Nature Catalysis, Sep 2018
  2. Catalysis
    Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes
    Drew Higgins, Melissa Wette, Brenna M. Gibbons , and 10 more authors
    ACS Applied Energy Materials, May 2018
  3. Catalysis
    Theoretical Investigations of Transition Metal Surface Energies under Lattice Strain and CO Environment
    Michael T. Tang, Zachary W. Ulissi, and Karen Chan
    The Journal of Physical Chemistry C, May 2018
  4. Catalysis
    Dynamic workflows for routine materials discovery in surface science
    Kevin Tran, Aini Palizhati, Seoin Back , and 1 more author
    Journal of Chemical Information and Modeling, May 2018

2017

  1. Catalysis/ML
    To address surface reaction network complexity using scaling relations machine learning and DFT calculations
    Zachary W. Ulissi, A. J. Medford, Thomas Bligaard , and 1 more author
    Nature Communications, Mar 2017
  2. Catalysis/ML
    Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO2 Reduction
    Zachary W. Ulissi, Michael T. Tang, Jianping Xiao , and 9 more authors
    ACS Catalysis, Oct 2017

2016

  1. Nanotechnology
    Persistently Auxetic Materials: Engineering the Poisson Ratio of 2D Self-Avoiding Membranes under Conditions of Non-Zero Anisotropic Strain
    Zachary W Ulissi, Ananth Govind Rajan, and Michael S Strano
    ACS Nano, Oct 2016
  2. Catalysis/ML
    Automated Discovery and Construction of Surface Phase Diagrams using Machine Learning
    Zachary W Ulissi, Aayush R Singh, Charlie Tsai , and 1 more author
    The Journal of Physical Chemistry Letters, Oct 2016

2015

  1. Nanotechnology
    A Mathematical Formulation and Solution of the CoPhMoRe Inverse Problem for Helically Wrapping Polymer Corona Phases on Cylindrical Substrates
    Gili Bisker, Jiyoung Ahn, Sebastian Kruss , and 3 more authors
    The Journal of Physical Chemistry C, Oct 2015
  2. Nanotechnology
    A 2D Equation-of-State Model for Corona Phase Molecular Recognition on Single-Walled Carbon Nanotube and Graphene Surfaces
    Zachary W. Ulissi, Jingqing Zhang, Vishnu Sresht , and 2 more authors
    Langmuir, Oct 2015

2014

  1. Nanotechnology
    Deterministic modelling of carbon nanotube near-infrared solar cells
    Darin O. Bellisario, Rishabh M. Jain, Zachary W. Ulissi , and 1 more author
    Energy Environ. Sci., Oct 2014
  2. Nanotechnology
    Quantitative Theory of Adsorptive Separation for the Electronic Sorting of Single-Walled Carbon Nanotubes
    Rishabh M. Jain, Kevin Tvrdy, Rebecca Han , and 2 more authors
    ACS Nano, Oct 2014
  3. Nanotechnology
    Spatiotemporal Intracellular Nitric Oxide Signaling Captured using Internalized, Near Infrared Fluorescent Carbon Nanotube Nanosensors
    Zachary W. Ulissi, Fatih Sen, Xun Gong , and 7 more authors
    Nano Letters, Oct 2014
  4. Nanotechnology
    Low Dimensional Carbon Materials for Applications in Mass and Energy Transport
    Qing Hua Wang, Darin O. Bellisario, Lee W. Drahushuk , and 7 more authors
    Chemistry of Materials, Jan 2014

2013

  1. Nanotechnology
    A Quantitative and Predictive Model of Electromigration-Induced Breakdown of Metal Nanowires
    Darin O. Bellisario, Zachary W. Ulissi, and Michael S. Strano
    Journal of Physical Chemistry C, Jun 2013
  2. Nanotechnology
    Charge Transfer at Junctions of a Single Layer of Graphene and a Metallic Single Walled Carbon Nanotube
    Geraldine L. C. Paulus, Qing Hua Wang, Zachary W. Ulissi , and 5 more authors
    Small, Jun 2013
  3. Nanotechnology
    Stochastic Pore Blocking and Gating in PDMS-Glass Nanopores from Vapor-Liquid Phase Transitions
    Steven Shimizu, Mark Ellison, Kimberly Aziz , and 5 more authors
    Journal of Physical Chemistry C, May 2013
  4. Systems
    Control of nano and microchemical systems
    Zachary W. Ulissi, Michael S. Strano, and Richard D. Braatz
    Computers & Chemical Engineering, Apr 2013
  5. Nanotechnology
    Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes
    Wonjoon Choi, Zachary W Ulissi, Steven FE Shimizu , and 3 more authors
    Nature Communications, Apr 2013
  6. Nanotechnology
    Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes
    Jingqing Zhang, Markita P. Landry, Paul W. Barone , and 24 more authors
    Nature Nanotechnology, Dec 2013

2012

  1. Catalysis
    Modelling and development of photoelectrochemical reactor for H-2 production
    C. Carver, Zachary W. Ulissi, C. K. Ong , and 3 more authors
    International Journal of Hydrogen Energy, Feb 2012
  2. Nanotechnology
    Observation of Oscillatory Surface Reactions of Riboflavin, Trolox, and Singlet Oxygen Using Single Carbon Nanotube Fluorescence Spectroscopy
    Fatih Sen, Ardemis A. Boghossian, Selda Sen , and 3 more authors
    ACS Nano, Dec 2012

2011

  1. Nanotechnology
    The chemical dynamics of nanosensors capable of single-molecule detection
    Ardemis A. Boghossian, Jingqing Zhang, François T. Le Floch-Yin , and 8 more authors
    The Journal of Chemical Physics, Dec 2011
  2. Catalysis
    Effect of multiscale model uncertainty on identification of optimal catalyst properties
    Zachary W. Ulissi, Vinay Prasad, and Dionisios Vlachos
    Journal of Catalysis, Jul 2011
  3. Nanotechnology
    Carbon Nanotubes as Molecular Conduits: Advances and Challenges for Transport through Isolated Sub-2 nm Pores
    Zachary W. Ulissi, Steven Shimizu, Chang Young Lee , and 1 more author
    Journal of Physical Chemistry Letters, Nov 2011
  4. Systems
    Applicability of Birth-Death Markov Modeling for Single-Molecule Counting Using Single-Walled Carbon Nanotube Fluorescent Sensor Arrays
    Zachary W. Ulissi, Jingqing Zhang, Ardemis A. Boghossian , and 4 more authors
    Journal of Physical Chemistry Letters, Jul 2011

2010

  1. Catalysis
    High throughput multiscale modeling for design of experiments, catalysts, and reactors: Application to hydrogen production from ammonia
    Vinay Prasad, Ayman Karim, Zachary W. Ulissi , and 2 more authors
    Chemical Engineering Science, Jan 2010

2006

  1. Biomed. Optics
    Visualization of biological texture using correlation coefficient images
    Alexander P Sviridov, Zachary W. Ulissi, Victor V Chernomordik , and 2 more authors
    Journal of Biomedical Optics, Jan 2006